Okay, so, whys everyone suddenly lovin synthetic turf in Vegas? Quality Artificial Grass Vegas Nevada. Well, a big chunk of its gotta be the environmental benefits! I mean, cmon (its obvious)!It aint no secret that Vegas is, like, super dry. Real grass? Forget about it. Youd need tons of water. Synthetic turf, though? It doesnt need any water at all! Isnt that amazing? Think of all the water saved. Thats water that can go to homes, pools, or, heck, just stay in Lake Mead!
And its not just water. You aint gotta use fertilizers or pesticides on fake grass(which is great, ya know). Those chemicals can run off and pollute stuff, which aint good for anyone, really. Plus, youre not mowing! No more noisy lawnmowers spewing out fumes. Less pollution is always a win!
Sure, theres some, uh, concerns, about heat, and the manufacturing process, but when you weigh it against the water savings and reduced chemical use..well, heck, its easy to see why more and more folks are switchin over! Its a greener choice, surprisingly, for a city in the desert!
Cost-Effectiveness and Maintenance Savings
Alright, so why is synthetic turf gaining popularity in Vegas? Well, for starters, its all about cost-effectiveness and maintenance savings! You see, synthetic turf doesn't require the same amount of water and pesticides that natural grass does. That means big savings on your utility bills and on the cost of fertilizers. And let's not forget, no more mowing the lawn every week!
Now, some might argue that the initial installation cost of synthetic turf can be quite high, and they wouldnt be wrong.
Why Synthetic Turf is Gaining Popularity in Vegas - Las Vegas Artificial Grass For Dogs
Backyard Turf Remodel Las Vegas
Sports Turf Installers Las Vegas
Las Vegas Turf Installers Near The Strip
But the long-term benefits far outweigh the upfront investment. You see, synthetic turf doesnt get worn out like natural grass does, so there's no need to keep reseeding or replacing it. This not only saves you money but also means less hassle in maintaining the turf over the years.
Another thing to consider is that synthetic turf doesn't get affected by weather conditions like extreme heat or cold. In Vegas, where the weather can be unpredictable, this is a huge plus. Unlike natural grass, you won't have to worry about your turf turning brown or dying in the heat of summer. And hey, who wants to deal with that?
So, in conclusion, synthetic turf is becoming the go-to choice in Vegas because of its cost-effectiveness and maintenance savings. It's a no-brainer really, when you think about it! No more worrying about the weather or the upkeep, just a beautiful, green lawn that lasts for years. It's a win-win situation, don't you think?
Versatility in Applications: From Parks to Sports Fields
Versatility in Applications: From Parks to Sports Fields
Synthetic turf is really gaining traction in Vegas, and it's not hard to see why! One of its biggest strengths is its versatility in applications. Whether it's for parks, sports fields, or even residential lawns, this type of grass is proving to be a game changer. You might think that real grass is the only option for outdoor spaces, but synthetic turf is challenging that idea in a big way.
Take parks, for instance. Families love spending time outdoors, and having a green space that looks great without the hassle of maintenance is a big plus. Kids can run around and play without worrying about muddy shoes or patchy grass. It's not just about aesthetics, either. Since synthetic turf drains well, it means no more soggy fields that can ruin a day out. That's a win-win situation!
Now, let's talk about sports fields. Traditional grass can be a pain to upkeep, especially in a climate like Vegas, where heat can scorch the earth. Synthetic turf stands up to heavy use – think soccer, football, and even frisbee games – without showing wear and tear. Coaches and players alike appreciate the consistent playing surface, and injuries can be reduced since there's no uneven ground to trip over. Plus, it doesn't require any pesticides or fertilizers, making it a more eco-friendly choice!
Homeowners are also catching on. Who wouldn't want a luscious green lawn without the constant mowing and watering? It's almost like having a perfect yard all year round! And let's not forget about the cost savings.
Why Synthetic Turf is Gaining Popularity in Vegas - Las Vegas Artificial Grass For Dogs
Synthetic Grass Rebate Las Vegas
Artificial Grass For Rv Parking Las Vegas
Las Vegas Artificial Grass For Dogs
While the initial investment might seem high, the long-term benefits of reduced maintenance and water usage can really add up.
In conclusion, the versatility of synthetic turf is making it a popular choice in Vegas. Whether it's for recreational spaces or your backyard, it's clear that this material is here to stay. So, if you haven't considered it yet, maybe it's time to give synthetic turf a thought! You won't regret it.
Health and Safety Considerations for Synthetic Turf
Listen, synthetic turfs popularity in Vegas isnt just cause it looks kinda nice. No way! We gotta talk bout keeping folks safe, yknow, with all this fake grass popping up.
Health and safety? Its a biggie. Think bout it, hotter-than-blazes days (and Vegas really delivers on those!). Synthetic turf can, like, really heat up. Were talking potential burn hazards, especially for little ones or pets. Aint nobody want that! Using infill (those little rubber bits) can help, but gotta make sure its the safe kind, none of that crumb rubber stuff thats been questioned.
And what about falls? Real grass, its got some give. Synthetic? Not so much.
Why Synthetic Turf is Gaining Popularity in Vegas - Artificial Grass For Rv Parking Las Vegas
Las Vegas Artificial Lawn Landscaping Ideas
Las Vegas Turf For Event Spaces
Best Synthetic Turf For Heat Las Vegas
Need to consider proper padding underneath for playgrounds or areas where peeps might trip. Plus, it aint gonna drain like real grass, so puddles and slippery spots are a possibility after rain.
We cant just ignore these things! Its not gonna take care of itself. Proper installation, regular maintenance (like brushing and cleaning), and choosing the right materials are key. Ignoring these, and youre just asking for trouble, arent you? So, yeah, Vegas loves the low-maintenance vibe of synthetic turf, but lets keep it safe, alright?
Landscape design is an independent profession and a design and art tradition, practiced by landscape designers, combining nature and culture. In contemporary practice, landscape design bridges the space between landscape architecture and garden design.[1]
Design projects may involve two different professional roles: landscape design and landscape architecture.
Landscape design typically involves artistic composition and artisanship, horticultural finesse and expertise, and emphasis on detailed site involvement from conceptual stages through to final construction.
Landscape architecture focuses more on urban planning, city and regional parks, civic and corporate landscapes, large scale interdisciplinary projects, and delegation to contractors after completing designs.
There can be a significant overlap of talent and skill between the two roles, depending on the education, licensing, and experience of the professional. Both landscape designers and landscape architects practice landscape design.[2]
The landscape design phase consists of research, gathering ideas, and setting a plan. Design factors include objective qualities such as: climate and microclimates; topography and orientation, site drainage and groundwater recharge; municipal and resource building codes; soils and irrigation; human and vehicular access and circulation; recreational amenities (i.e., sports and water); furnishings and lighting; native plant habitat botany when present; property safety and security; construction detailing; and other measurable considerations.
Design factors also include subjective qualities such as genius loci (the special site qualities to emphasize); client's needs and preferences; desirable plants and elements to retain on site, modify, or replace, and that may be available for borrowed scenery from beyond; artistic composition from perspectives of both looking upon and observing from within; spatial development and definition – using lines, sense of scale, and balance and symmetry; plant palettes; and artistic focal points for enjoyment. There are innumerable other design factors and considerations brought to the complex process of designing a garden that is beautiful, well-functioning, and that thrives over time.
The up-and-coming practice of online landscape design allows professional landscapers to remotely design and plan sites through manipulation of two-dimensional images without ever physically visiting the location. Due to the frequent lack of non-visual, supplementary data such as soil assessments and pH tests, online landscaping necessarily must focus on incorporating only plants which are tolerant across many diverse soil conditions.
Historically, landscape designers trained by apprenticing—such as André Le Nôtre, who apprenticed with his father before designing the Gardens of Versailles—to accomplished masters in the field, with the titular name varying and reputation paramount for a career. The professional section of garden designers in Europe and the Americas went by the name "Landscape Gardener". In the 1890s, the distinct classification of landscape architect was created, with educational and licensing test requirements for using the title legally. Beatrix Farrand, the sole woman in the founding group, refused the title preferring Landscape Gardener. Matching the client and technical needs of a project, and the appropriate practitioner with talent, legal qualifications, and experienced skills, surmounts title nomenclature.[citation needed]
Institutional education in landscape design appeared in the early 20th century. Over time it became available at various levels. Ornamental horticulture programs with design components are offered at community college and universities within schools of agriculture or horticulture, with some beginning to offer garden or landscape design certificates and degrees. Departments of landscape architecture are located within university schools of architecture or environmental design, with undergraduate and graduate degrees offered. Specialties and minors are available in horticultural botany, horticulture, natural resources, landscape engineering, construction management, fine and applied arts, and landscape design history. Traditionally, hand-drawn drawings documented the design and position of features for construction, but Landscape design software is frequently used now.[citation needed]
Other routes of training are through informal apprenticeships with practicing landscape designers, landscape architects, landscape contractors, gardeners, nurseries and garden centers, and docent programs at botanical and public gardens. Since the landscape designer title does not have a college degree or licensing requirements to be used, there is a very wide range of sophistication, aesthetic talent, technical expertise, and specialty strengths to be responsibly matched with specific client and project requirements.[citation needed]
Many landscape designers have an interest and involvement with gardening, personally or professionally. Gardens are dynamic and not static after construction and planting are completed, and so in some ways are "never done". Involvement with landscape management and direction of the ongoing garden direction, evolution, and care depend on the professional's and client's needs and inclinations. As with the other interrelated landscape disciplines, there can be an overlap of services offered under the titles of landscape designer or professional gardener.[2]
Science of relationships between ecological processes in the environment and particular ecosystems
Land cover surrounding Madison, Wisconsin. Fields are colored yellow and brown and urban surfaces are colored red.Impervious surfaces surrounding Madison, WisconsinCanopy cover surrounding Madison, Wisconsin
Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy.[1][2][3] Landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.[4]
As a highly interdisciplinary field in systems science, landscape ecology integrates biophysical and analytical approaches with humanistic and holistic perspectives across the natural sciences and social sciences. Landscapes are spatially heterogeneous geographic areas characterized by diverse interacting patches or ecosystems, ranging from relatively natural terrestrial and aquatic systems such as forests, grasslands, and lakes to human-dominated environments including agricultural and urban settings.[2][5][6]
The most salient characteristics of landscape ecology are its emphasis on the relationship among pattern, process and scales, and its focus on broad-scale ecological and environmental issues. These necessitate the coupling between biophysical and socioeconomic sciences. Key research topics in landscape ecology include ecological flows in landscape mosaics, land use and land cover change, scaling, relating landscape pattern analysis with ecological processes, and landscape conservation and sustainability.[7] Landscape ecology also studies the role of human impacts on landscape diversity in the development and spreading of new human pathogens that could trigger epidemics.[8][9]
The German term Landschaftsökologie – thus landscape ecology – was coined by German geographerCarl Troll in 1939.[10] He developed this terminology and many early concepts of landscape ecology as part of his early work, which consisted of applying aerial photograph interpretation to studies of interactions between environment and vegetation.
Heterogeneity is the measure of how parts of a landscape differ from one another. Landscape ecology looks at how this spatial structure affects organism abundance at the landscape level, as well as the behavior and functioning of the landscape as a whole. This includes studying the influence of pattern, or the internal order of a landscape, on process, or the continuous operation of functions of organisms.[11] Landscape ecology also includes geomorphology as applied to the design and architecture of landscapes.[12]Geomorphology is the study of how geological formations are responsible for the structure of a landscape.
One central landscape ecology theory originated from MacArthur & Wilson'sThe Theory of Island Biogeography. This work considered the biodiversity on islands as the result of competing forces of colonization from a mainland stock and stochasticextinction. The concepts of island biogeography were generalized from physical islands to abstract patches of habitat by Levins' metapopulation model (which can be applied e.g. to forest islands in the agricultural landscape[13]). This generalization spurred the growth of landscape ecology by providing conservation biologists a new tool to assess how habitat fragmentation affects population viability. Recent growth of landscape ecology owes much to the development of geographic information systems (GIS)[14] and the availability of large-extent habitat data (e.g. remotely sensed datasets).
Landscape ecology developed in Europe from historical planning on human-dominated landscapes. Concepts from general ecology theory were integrated in North America.[when?] While general ecology theory and its sub-disciplines focused on the study of more homogenous, discrete community units organized in a hierarchical structure (typically as ecosystems, populations, species, and communities), landscape ecology built upon heterogeneity in space and time. It frequently included human-caused landscape changes in theory and application of concepts.[15]
By 1980, landscape ecology was a discrete, established discipline. It was marked by the organization of the International Association for Landscape Ecology (IALE) in 1982. Landmark book publications defined the scope and goals of the discipline, including Naveh and Lieberman[16] and Forman and Godron.[17][18] Forman[6] wrote that although study of "the ecology of spatial configuration at the human scale" was barely a decade old, there was strong potential for theory development and application of the conceptual framework.
Today, theory and application of landscape ecology continues to develop through a need for innovative applications in a changing landscape and environment. Landscape ecology relies on advanced technologies such as remote sensing, GIS, and models. There has been associated development of powerful quantitative methods to examine the interactions of patterns and processes.[5] An example would be determining the amount of carbon present in the soil based on landform over a landscape, derived from GIS maps, vegetation types, and rainfall data for a region. Remote sensing work has been used to extend landscape ecology to the field of predictive vegetation mapping, for instance by Janet Franklin.
Nowadays, at least six different conceptions of landscape ecology can be identified: one group tending toward the more disciplinary concept of ecology (subdiscipline of biology; in conceptions 2, 3, and 4) and another group—characterized by the interdisciplinary study of relations between human societies and their environment—inclined toward the integrated view of geography (in conceptions 1, 5, and 6):[19]
Interdisciplinary analysis of subjectively defined landscape units (e.g. Neef School[20][21]): Landscapes are defined in terms of uniformity in land use. Landscape ecology explores the landscape's natural potential in terms of functional utility for human societies. To analyse this potential, it is necessary to draw on several natural sciences.
Topological ecology at the landscape scale[22][23] 'Landscape' is defined as a heterogeneous land area composed of a cluster of interacting ecosystems (woods, meadows, marshes, villages, etc.) that is repeated in similar form throughout. It is explicitly stated that landscapes are areas at a kilometres wide human scale of perception, modification, etc. Landscape ecology describes and explains the landscapes' characteristic patterns of ecosystems and investigates the flux of energy, mineral nutrients, and species among their component ecosystems, providing important knowledge for addressing land-use issues.
Organism-centered, multi-scale topological ecology (e.g. John A. Wiens[24][25]): Explicitly rejecting views expounded by Troll, Zonneveld, Naveh, Forman & Godron, etc., landscape and landscape ecology are defined independently of human perceptions, interests, and modifications of nature. 'Landscape' is defined – regardless of scale – as the 'template' on which spatial patterns influence ecological processes. Not humans, but rather the respective species being studied is the point of reference for what constitutes a landscape.
Topological ecology at the landscape level of biological organisation (e.g. Urban et al.[26]): On the basis of ecological hierarchy theory, it is presupposed that nature is working at multiple scales and has different levels of organisation which are part of a rate-structured, nested hierarchy. Specifically, it is claimed that, above the ecosystem level, a landscape level exists which is generated and identifiable by high interaction intensity between ecosystems, a specific interaction frequency and, typically, a corresponding spatial scale. Landscape ecology is defined as ecology that focuses on the influence exerted by spatial and temporal patterns on the organisation of, and interaction among, functionally integrated multispecies ecosystems.
Analysis of social-ecological systems using the natural and social sciences and humanities (e.g. Leser;[27] Naveh;[28][29] Zonneveld[30]): Landscape ecology is defined as an interdisciplinary super-science that explores the relationship between human societies and their specific environment, making use of not only various natural sciences, but also social sciences and humanities. This conception is grounded in the assumption that social systems are linked to their specific ambient ecological system in such a way that both systems together form a co-evolutionary, self-organising unity called 'landscape'. Societies' cultural, social and economic dimensions are regarded as an integral part of the global ecological hierarchy, and landscapes are claimed to be the manifest systems of the 'total human ecosystem' (Naveh) which encompasses both the physical ('geospheric') and mental ('noospheric') spheres.
Ecology guided by cultural meanings of lifeworldly landscapes (frequently pursued in practice[31] but not defined, but see, e.g., Hard;[32] Trepl[19]): Landscape ecology is defined as ecology that is guided by an external aim, namely, to maintain and develop lifeworldlylandscapes. It provides the ecological knowledge necessary to achieve these goals. It investigates how to sustain and develop those populations and ecosystems which (i) are the material 'vehicles' of lifeworldly, aesthetic and symbolic landscapes and, at the same time, (ii) meet societies' functional requirements, including provisioning, regulating, and supporting ecosystem services. Thus landscape ecology is concerned mainly with the populations and ecosystems which have resulted from traditional, regionally specific forms of land use.
Some research programmes of landscape ecology theory, namely those standing in the European tradition, may be slightly outside of the "classical and preferred domain of scientific disciplines" because of the large, heterogeneous areas of study. However, general ecology theory is central to landscape ecology theory in many aspects. Landscape ecology consists of four main principles: the development and dynamics of spatial heterogeneity, interactions and exchanges across heterogeneous landscapes, influences of spatial heterogeneity on biotic and abiotic processes, and the management of spatial heterogeneity. The main difference from traditional ecological studies, which frequently assume that systems are spatially homogenous, is the consideration of spatial patterns.[33]
Landscape ecology not only created new terms, but also incorporated existing ecological terms in new ways. Many of the terms used in landscape ecology are as interconnected and interrelated as the discipline itself.
Certainly, 'landscape' is a central concept in landscape ecology. It is, however, defined in quite different ways. For example:[19]Carl Troll conceives of landscape not as a mental construct but as an objectively given 'organic entity', a harmonic individuum of space.[34]Ernst Neef[20][21] defines landscapes as sections within the uninterrupted earth-wide interconnection of geofactors which are defined as such on the basis of their uniformity in terms of a specific land use, and are thus defined in an anthropocentric and relativistic way. According to Richard Forman and Michel Godron,[22] a landscape is a heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in similar form throughout, whereby they list woods, meadows, marshes and villages as examples of a landscape's ecosystems, and state that a landscape is an area at least a few kilometres wide. John A. Wiens[24][25] opposes the traditional view expounded by Carl Troll, Isaak S. Zonneveld, Zev Naveh, Richard T. T. Forman/Michel Godron and others that landscapes are arenas in which humans interact with their environments on a kilometre-wide scale; instead, he defines 'landscape'—regardless of scale—as "the template on which spatial patterns influence ecological processes".[25][35] Some define 'landscape' as an area containing two or more ecosystems in close proximity.[15]
Scale and heterogeneity (incorporating composition, structure, and function)
A main concept in landscape ecology is scale. Scale represents the real world as translated onto a map, relating distance on a map image and the corresponding distance on earth.[36] Scale is also the spatial or temporal measure of an object or a process,[33] or amount of spatial resolution.[6] Components of scale include composition, structure, and function, which are all important ecological concepts. Applied to landscape ecology, composition refers to the number of patch types (see below) represented on a landscape and their relative abundance. For example, the amount of forest or wetland, the length of forest edge, or the density of roads can be aspects of landscape composition. Structure is determined by the composition, the configuration, and the proportion of different patches across the landscape, while function refers to how each element in the landscape interacts based on its life cycle events.[33]Pattern is the term for the contents and internal order of a heterogeneous area of land.[17]
A landscape with structure and pattern implies that it has spatial heterogeneity, or the uneven distribution of objects across the landscape.[6] Heterogeneity is a key element of landscape ecology that separates this discipline from other branches of ecology. Landscape heterogeneity is able to quantify with agent-based methods as well.[37]
Patch, a term fundamental to landscape ecology, is defined as a relatively homogeneous area that differs from its surroundings.[6] Patches are the basic unit of the landscape that change and fluctuate, a process called patch dynamics. Patches have a definite shape and spatial configuration, and can be described compositionally by internal variables such as number of trees, number of tree species, height of trees, or other similar measurements.[6]
Matrix is the "background ecological system" of a landscape with a high degree of connectivity. Connectivity is the measure of how connected or spatially continuous a corridor, network, or matrix is.[6] For example, a forested landscape (matrix) with fewer gaps in forest cover (open patches) will have higher connectivity. Corridors have important functions as strips of a particular type of landscape differing from adjacent land on both sides.[6] A network is an interconnected system of corridors while mosaic describes the pattern of patches, corridors, and matrix that form a landscape in its entirety.[6]
Landscape patches have a boundary between them which can be defined or fuzzy.[15] The zone composed of the edges of adjacent ecosystems is the boundary.[6]Edge means the portion of an ecosystem near its perimeter, where influences of the adjacent patches can cause an environmental difference between the interior of the patch and its edge. This edge effect includes a distinctive species composition or abundance.[6] For example, when a landscape is a mosaic of perceptibly different types, such as a forest adjacent to a grassland, the edge is the location where the two types adjoin. In a continuous landscape, such as a forest giving way to open woodland, the exact edge location is fuzzy and is sometimes determined by a local gradient exceeding a threshold, such as the point where the tree cover falls below thirty-five percent.[33]
A type of boundary is the ecotone, or the transitional zone between two communities.[12] Ecotones can arise naturally, such as a lakeshore, or can be human-created, such as a cleared agricultural field from a forest.[12] The ecotonal community retains characteristics of each bordering community and often contains species not found in the adjacent communities. Classic examples of ecotones include fencerows, forest to marshlands transitions, forest to grassland transitions, or land-water interfaces such as riparian zones in forests. Characteristics of ecotones include vegetational sharpness, physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal species, spatial mass effect, and species richness higher or lower than either side of the ecotone.[38]
An ecocline is another type of landscape boundary, but it is a gradual and continuous change in environmental conditions of an ecosystem or community. Ecoclines help explain the distribution and diversity of organisms within a landscape because certain organisms survive better under certain conditions, which change along the ecocline. They contain heterogeneous communities which are considered more environmentally stable than those of ecotones.[39] An ecotope is a spatial term representing the smallest ecologically distinct unit in mapping and classification of landscapes.[6] Relatively homogeneous, they are spatially explicit landscape units used to stratify landscapes into ecologically distinct features. They are useful for the measurement and mapping of landscape structure, function, and change over time, and to examine the effects of disturbance and fragmentation.
Disturbance is an event that significantly alters the pattern of variation in the structure or function of a system. Fragmentation is the breaking up of a habitat, ecosystem, or land-use type into smaller parcels.[6] Disturbance is generally considered a natural process. Fragmentation causes land transformation, an important process in landscapes as development occurs.
An important consequence of repeated, random clearing (whether by natural disturbance or human activity) is that contiguous cover can break down into isolated patches. This happens when the area cleared exceeds a critical level, which means that landscapes exhibit two phases: connected and disconnected.[40]
Landscape ecology theory stresses the role of human impacts on landscape structures and functions. It also proposes ways for restoring degraded landscapes.[16] Landscape ecology explicitly includes humans as entities that cause functional changes on the landscape.[15] Landscape ecology theory includes the landscape stability principle, which emphasizes the importance of landscape structural heterogeneity in developing resistance to disturbances, recovery from disturbances, and promoting total system stability.[17] This principle is a major contribution to general ecological theories which highlight the importance of relationships among the various components of the landscape.
Integrity of landscape components helps maintain resistance to external threats, including development and land transformation by human activity.[5] Analysis of land use change has included a strongly geographical approach which has led to the acceptance of the idea of multifunctional properties of landscapes.[18] There are still calls for a more unified theory of landscape ecology due to differences in professional opinion among ecologists and its interdisciplinary approach (Bastian 2001).
An important related theory is hierarchy theory, which refers to how systems of discrete functional elements operate when linked at two or more scales. For example, a forested landscape might be hierarchically composed of drainage basins, which in turn are composed of local ecosystems, which are in turn composed of individual trees and gaps.[6] Recent theoretical developments in landscape ecology have emphasized the relationship between pattern and process, as well as the effect that changes in spatial scale has on the potential to extrapolate information across scales.[33] Several studies suggest that the landscape has critical thresholds at which ecological processes will show dramatic changes, such as the complete transformation of a landscape by an invasive species due to small changes in temperature characteristics which favor the invasive's habitat requirements.[33]
Developments in landscape ecology illustrate the important relationships between spatial patterns and ecological processes. These developments incorporate quantitative methods that link spatial patterns and ecological processes at broad spatial and temporal scales. This linkage of time, space, and environmental change can assist managers in applying plans to solve environmental problems.[5] The increased attention in recent years on spatial dynamics has highlighted the need for new quantitative methods that can analyze patterns, determine the importance of spatially explicit processes, and develop reliable models.[33]Multivariate analysis techniques are frequently used to examine landscape level vegetation patterns. Studies use statistical techniques, such as cluster analysis, canonical correspondence analysis (CCA), or detrended correspondence analysis (DCA), for classifying vegetation. Gradient analysis is another way to determine the vegetation structure across a landscape or to help delineate critical wetland habitat for conservation or mitigation purposes (Choesin and Boerner 2002).[41]
Climate change is another major component in structuring current research in landscape ecology.[42] Ecotones, as a basic unit in landscape studies, may have significance for management under climate change scenarios, since change effects are likely to be seen at ecotones first because of the unstable nature of a fringe habitat.[38] Research in northern regions has examined landscape ecological processes, such as the accumulation of snow, melting, freeze-thaw action, percolation, soil moisture variation, and temperature regimes through long-term measurements in Norway.[43] The study analyzes gradients across space and time between ecosystems of the central high mountains to determine relationships between distribution patterns of animals in their environment. Looking at where animals live, and how vegetation shifts over time, may provide insight into changes in snow and ice over long periods of time across the landscape as a whole.
Other landscape-scale studies maintain that human impact is likely the main determinant of landscape pattern over much of the globe.[44][45] Landscapes may become substitutes for biodiversity measures because plant and animal composition differs between samples taken from sites within different landscape categories. Taxa, or different species, can "leak" from one habitat into another, which has implications for landscape ecology. As human land use practices expand and continue to increase the proportion of edges in landscapes, the effects of this leakage across edges on assemblage integrity may become more significant in conservation. This is because taxa may be conserved across landscape levels, if not at local levels.[46]
Land change modeling is an application of landscape ecology designed to predict future changes in land use. Land change models are used in urban planning, geography, GIS, and other disciplines to gain a clear understanding of the course of a landscape.[47] In recent years, much of the Earth's land cover has changed rapidly, whether from deforestation or the expansion of urban areas.[48]
Landscape ecology has been incorporated into a variety of ecological subdisciplines. For example, it is closely linked to land change science, the interdisciplinary of land use and land cover change and their effects on surrounding ecology. Another recent development has been the more explicit consideration of spatial concepts and principles applied to the study of lakes, streams, and wetlands in the field of landscape limnology. Seascape ecology is a marine and coastal application of landscape ecology.[49] In addition, landscape ecology has important links to application-oriented disciplines such as agriculture and forestry. In agriculture, landscape ecology has introduced new options for the management of environmental threats brought about by the intensification of agricultural practices. Agriculture has always been a strong human impact on ecosystems.[18]
In forestry, from structuring stands for fuelwood and timber to ordering stands across landscapes to enhance aesthetics, consumer needs have affected conservation and use of forested landscapes. Landscape forestry provides methods, concepts, and analytic procedures for landscape forestry.[50] Landscape ecology has been cited as a contributor to the development of fisheries biology as a distinct biological science discipline,[51] and is frequently incorporated in study design for wetland delineation in hydrology.[39] It has helped shape integrated landscape management.[52] Lastly, landscape ecology has been very influential for progressing sustainability science and sustainable development planning. For example, a recent study assessed sustainable urbanization across Europe using evaluation indices, country-landscapes, and landscape ecology tools and methods.[53]
Landscape ecology has also been combined with population genetics to form the field of landscape genetics, which addresses how landscape features influence the population structure and gene flow of plant and animal populations across space and time[54] and on how the quality of intervening landscape, known as "matrix", influences spatial variation.[55] After the term was coined in 2003, the field of landscape genetics had expanded to over 655 studies by 2010,[56] and continues to grow today. As genetic data has become more readily accessible, it is increasingly being used by ecologists to answer novel evolutionary and ecological questions,[57] many with regard to how landscapes effect evolutionary processes, especially in human-modified landscapes, which are experiencing biodiversity loss.[58]
^Troll C (1939). "Luftbildplan und ökologische Bodenforschung" [Aerial photography and ecological studies of the earth]. Zeitschrift der Gesellschaft für Erdkunde (in German). Berlin: 241–298.
^Turner MG (1989). "Landscape ecology: the effect of pattern on process". Annual Review of Ecology and Systematics. 20: 171–197. doi:10.1146/annurev.es.20.110189.001131.
^ abcAllaby M (1998). Oxford Dictionary of Ecology. New York, NY: Oxford University Press.
^Banaszak J, ed. (2000). Ecology of Forest Islands. Bydgoszcz, Poland: Bydgoszcz University Press. p. 313.
^ abcKirchhoff T, Trepl L, Vicenzotti V (February 2013). "What is landscape ecology? An analysis and evaluation of six different conceptions". Landscape Research. 38 (1): 33–51. doi:10.1080/01426397.2011.640751. S2CID145421450. All the following quotations and descriptions come from this source.
^ abNeef E (1967). Die theoretischen Grundlagen der Landschaftslehre [The theoretical basics of landscape science] (in German). Gotha: Haack.
^ abHaase G (1990). "Approaches to, and methods of landscape diagnosis as a basis of landscape planning and landscape management". Ekológia. 9 (1): 31–44.
^ abForman RT, Godron M (November 1981). "Patches and structural components for a landscape ecology". BioScience. 31 (10): 733–40. doi:10.2307/1308780. JSTOR1308780.
^Forman RT, Godron M (1986). Landscape ecology. NY: Wiley.
^ abWiens JA, Milne BT (December 1989). "Scaling of 'landscapes' in landscape ecology, or, landscape ecology from a beetle's perspective". Landscape Ecology. 3 (2): 87–96. doi:10.1007/BF00131172. S2CID15683804.
^ abcWiens JA (1999). "The science and practice of landscape ecology.". In Klopatek JM, Gardner RH (eds.). Landscape ecological analyses: Issues and applications. NY: Springer. pp. 371–383.
^Leser H (1991). Landschaftsökologie. Ansatz, Modelle, Methodik, Anwendung. Stuttgart: Ulmer.
^Naveh Z, Lieberman AS (1984). Landscape ecology. Theory and application. NY: Springer.
^Naveh N (2000). "What is holistic landscape ecology? A conceptual introduction". Landscape and Urban Planning. 50 (1–3): 7–26. doi:10.1016/S0169-2046(00)00077-3.
^Zonneveld IS (1995). Land ecology: an introduction to landscape ecology as a base for land evaluation, land management and conservation. Amsterdam: SPB.
^However, not always under the designation 'landscape ecology', but as part of landscape stewardship, landscape architecture and, first and foremost, environmental or urban and landscape planning.
^Hard G (1973). Die Geographie. Eine wissenschaftstheoretische Einführung. Berlin: deGruyter. pp. 92–95.
^ abcdefgTurner MG, Gardner RH, eds. (1991). Quantitative Methods in Landscape Ecology. New York, NY, USA: Springer-Verlag.
^Troll C (2007). "The geographic landscape and its investigation.". In Wiens JA, Moss MR, Turner MG, Mladenoff DJ (eds.). Foundation papers in landscape ecology. New York: Columbia University Press. pp. 71–101. First published as: Troll C (1950). "Die geographische Landschaft und ihre Erforschung". Studium Generale. Vol. 3. pp. 163–181. doi:10.1007/978-3-662-38240-0_20. ISBN978-3-662-37475-7. cite book: ISBN / Date incompatibility (help)
^Wiens JA (2005). "Toward a unified landscape ecology". In Wiens JA, Moss MR (eds.). Issues and perspectives in landscape ecology. Cambridge: Cambridge University Press. pp. 365–373.
^Malczewski J (1999). GIS and Multicriteria Decision Analysis. New York, NY, USA: John Wiley and Sons, Inc.
^Lyon J, Sagers CL (September 1998). "Structure of herbaceous plant assemblages in a forested riparian landscape". Plant Ecology. 138 (1): 1–6. doi:10.1023/A:1009705912710. S2CID28628830.
^Ochoa-Hueso R, Delgado-Baquerizo M, King PT, Benham M, Arca V, Power SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009. hdl:10261/336676. S2CID92606851.
^Shaker RR (September 2015). "The well-being of nations: an empirical assessment of sustainable urbanization for Europe". International Journal of Sustainable Development & World Ecology. 22 (5): 375–87. doi:10.1080/13504509.2015.1055524. S2CID154904536.
^Manel S, Schwartz MK, Luikart G, Taberlet P (April 2003). "Landscape genetics: combining landscape ecology and population genetics". Trends in Ecology & Evolution. 18 (4): 189–197. doi:10.1016/S0169-5347(03)00008-9. S2CID2984426.
This article's lead sectionmay be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article.(September 2023)
Energy-efficient landscaping is a type of landscaping designed for the purpose of conserving energy. There is a distinction between the embedded energy of materials and constructing the landscape, and the energy consumed by the maintenance and operations of a landscape.
Landscaping often refers to the practice of landscape design and gardening, which traditionally concern with designing sites with vegetation and craft for aesthetic, cultural, social, and religious purposes.
Energy-efficient landscaping falls into the categories of the latter, and it stresses the energy conservation in site operation or the creation of the site. Among its various term usage, energy-efficient landscaping can refer to the reduction of energy usage in maintenance and operation of the landscape narrowly for the user/owner of the site,[1][2] or broadly for the energy conservation of the global environment, such as mitigating urban heat island effect with reflective surface (increase albedo) or reducing the need of water treatment and sewage by using pervious pavement. Common methods of energy-efficient landscaping include reducing heat or cooling load of a building through shade, wind-blocking, and insulation; management of water; and using plants or construction material that cost less energy.
Planting trees for the purpose of providing shade, which reduces cooling costs. The mature height of the trees and their canopy shape need to be well studied. The locations of the trees should be chosen based on their height and the height of the building. Also, when trees are planted closer to the windows or walls, they will provide shade for a greater portion of the day as the Sun keep changing its relative position to the window and the trees. Planting the trees too close to the building, however, is also not desirable, as it might create the danger of touching above-ground or underground utility lines.[2]
The type of leaves of the trees is also important. Broad-leaf evergreens like Southern magnolia can be used to provide dense year-round shade. However, needle-leaf evergreens like pines and cedars can provide more air circulation though their shade is sparser and more open.[2]
Not only can tree shade be used to reduce the cooling load in building, it can also be used in parking lot, driveways, and playgrounds.[3]
Planting or building windbreaks to slow winds near buildings, which reduces heat loss. Homes loses heat through infiltration in the Winter. Windbreaks should be designed to intercept and redirect the Winter winds before they reach the house and outdoor areas with playgrounds or sensitive plants. The windbreak in the Winter should also be designed so that they would not block the sunlight in the Winter or block the wind in the Summer.[3]
Planting shrubs near the wall creates an insulating air space around the wall. This is a similar idea to the use of a tree windbreak. Shrubs should be planted at least 2 feet (0.61 m) from the wall to prevent moisture and insect problems.[2]
Earth sheltering is an example of using natural landform and geological condition to save energy in building a structure. It is believed to save energy in multiple ways: by using the rock or strong
soil as wall and ground as the floor, construction cost is greatly reduced, because the structure will need less load bearing material and there is no need for excavation and foundation construction; the wall and the floor made of natural material likely will have better insulation than artificial wall and floors; Natural walls and floors can also reduce fire hazard, because they are hard to be ignited thus reduce the need for flame retardants.[4]
In a study of simulating a structure with varying depth submerged in the ground to understand the insulating effect of natural wall and ground in cold climate,[5] it was found that the thermal transmittance of the earth-sheltered walls and floor is 16% - 45% lower than that of the structure totally above ground.
Other than Earth Sheltering, a simpler way of taking advantage of natural landform is using geology, such as mountains, for shade.
Often, landscape design and architecture refers to the design in ground surface; in many contexts, specifically, the design guidance and topics are for a typical residential landscape in suburban housing, where there is a yard (garden), a driveway, and a house. In the crowded urban area, however, there is not abundant ground surface for landscape design. Green roofs, then, become an appealing option to add some aesthetics and green to the crowded cities. Not limited to the cities, green roofs can be applied to wherever it will fit. Most of times, actually, the decision to build Green roofs is based on local climate and policy. It is because other than its aesthetics, green roofs are used often for their ability to conserve energy, such as increasing insulation of the building roof, retaining and infiltrating rainwater, and potentially reducing urban heat island effect when it was installed to a certain scale. In Germany, for example, partly because of EU's regulation, 17% of the new roof construction are green roofs. In Washington DC, green roofs are used as an alternative storm-water retention technique.[6]
Reducing building energy consumption by increasing the roof insulation: In total energy consumption reduction, green roof would have the best performance relative to a bare roof in a colder climate, which require nighttime heating. The reduction in heating load of the building increase as the soil depth of the green roof increase, though an increased soil depth would mean heavier roof. On the other hand, if a building is cooling-dominated, leaf area index is more important. In peak energy consumption reduction, green roof also has a notable effect, and the leaf area index and soil depth are both positively related to its performance.[7]
Rainwater retention and evapotranspiration: 3-4 inches of soil can retain about 1 inch of rainwater. That is about 75% of precipitation in most areas in United States.[8] By retaining the rainwater in soil, the water would not become runoff, instead they would result in evapotranspiration.
Water runoff quality: When green roof is not able to hold the amount of the precipitation, the excessive rainwater will become runoff. In a field experiment where contaminated water is dripped into a green roof section to mimic rainfall in the green roof, the exfiltrate water was studied and analyzed. It was found that since the average level of suspended solid, nitrogen, and phosphorus concentrations in Green roof water outflow is significantly higher than that in conventional roof outflow, extensive green roofs will become a source of nutrient contamination in urban water environment.[9]
Fire Hazard: Green roofs can be more easily ignited than conventional roofs; it is a concern that when the green roof caught fire, the high temperature would damage the roof structure itself. Not only the idea of damaging the roof is contradictory to energy conservation and sustainability, the fire and the roof damage could cause safety issue to the residents. It remains a matter of debate as to whether a green roof will exacerbate or mitigate the effects of a fire. Some argue that, because vegetation is about 95% water, the green roof actually reduces chances of a fire. On the other hand, some argue that during autumn and winter, when the vegetation is dry, fire hazard is increased. A recent study has found, through mathematical modelling, that [10] when the vegetation itself caught fire, heat does penetrate downward (rather slowly as the thermal conductivity of soil is low), eventually damaging the roof itself. Thus the key to whether ignited vegetation will damage the roof or not depends on the thickness of the soil. The study also found that by installing a gypsum layer beneath the soil layer, the possibility of damaging the roof can be greatly reduced.
Additional structural load: Most old buildings were not designed for the extra roof dead load of the green roofs. If more energy is consumed in building the additional load bearing structure for the green roofs than the energy saved through insulation enhancement and water retention, it would be contradictory to the idea of energy conservation. By study, common green roofs types in the market would increase the load on the rood by 1.2 to 2.43 kilo-newton per square meter.[11]
A lot pavement in urban and suburban areas is impervious, this likely would result the contaminated stormwater runoff. In pre-development area, averagely 50% of storm-water would result in evapotranspiration, 5% in runoff, and 45% in infiltration, whereas in post-development area, only 35% storm-water result in evapotranspiration, and 50% in runoff, and 15% in infiltration. This change has caused various problem, such as flooding, infrastructural damage due to rapid movement of water, and water contamination.[12]
By using pervious paving, however, the amount of infiltrated storm-water will be increased in post-development area, and the pollutants in the filtrated water can be reduced; thus the problem can be mitigated. In Low Impact Development 2008 Conference, ASCE performed two bench-scale study to examine the effectiveness of permeable interlocking concrete pavement in terms of water flow rate and the role of microbial colonies in pollutant removal in the micro-environment of porous pavement.[13] The experiment shows 84% relative total suspended solids (TSS) removal on average, yet the increased relative removal over time suggests there is potentially solid buildup, and that may result system clogging and system failure. The evidence in pollutant removal proved the conclusion of the previous study that the annual pollutant runoff from the driveways was 86% lower for pervious driveways than impervious driveways.
The sun rises from the East, moves South, and sets in the West. Thus, a rule of thumb for design is to avoid south-facing windows when trying to decrease cooling load of the building and increase south-facing windows when trying to decrease heating load of the building. The reality, however, is more complicated. The sun rises from East and sets in West perfectly only on the autumnal and vernal equinoxes, and during the vast majority of the year, Sun travels slightly southward and eastward depending on whether it is summer or winter and on whether the observer is in the Northern Hemisphere or the Southern Hemisphere.[14]
To design for the best performance of the site, the designer needs to well understand the local climate and the site's location relative to equator.
In agreement with the city to build a resilient and sustainable landscape, Massachusetts Institute of Technology has initiated several energy efficiency upgrade projects, these projects include:
Planting trees and using the tree canopy to provide shade for pedestrians, which also would give students more incentive to walk
Landscape filters are added to (partly) treat rain water
Storm-water storage are installed to mitigate flood
Lighter color pavement for reducing heat island effect
My initial contact was with Ray, whom did an excellent job giving me an estimate on what I wanted done in my small yard and walkway., the guys that came out and did the work were superior. They did an excellent job. I’m very pleased with this company. I will highly recommend them to family and friends, and I will be using them in the near future for other little projects.
Eric and team did an amazing job. They worked with me for months while I got HOA approval for the project. Once they began working they were great, going over everything in detail and making sure things were perfect. This project included wall repair, stucco and paint repair, paver and turf installation. Extremely satisfied with this experience.
Above and beyond. I’ve got 20 years in the construction industry and these guys are top notch. Tell them what you need, they’ll work with you. Communication is clear and they want to make you feel good about the whole process: If I had to do our back yard 100 more times I’d use rock n block every time.
The owner is a stand up man, his project managers, even down to his workers. All respectful, hard working people. This is a call you won’t regret making.
I had turf and a sidewalk of pavers put down. Wes was amazing and got me all hooked up with a plan and had tons of options for me to choose from. He handled everything. After we got locked in the crew showed up a few weeks later and the went to work like animals. Those guys killed it. Everything looks amazing. I plan to call Wes back when I'm ready for my next project in the front of the yard. Thank you Wes and everyone who killed this project
We have been working with Al and the team for many years (8) to be exact. We have had the pleasure of working with many of their clients throughout this time and we absolutely love how their clients are so pleased with the work they do and the outcome of the projects!
The sales team and staff have been very supportive and professional and that’s hard to come by.
We look forward to many more years of this partnership with a very positive and motivated company that’s always looking out for the best interests of the community!
Is artificial grass a good option for the Las Vegas climate?
Absolutely! Artificial grass is ideal for Las Vegas due to its extreme heat and water restrictions. It stays green year-round without the need for constant watering or mowing. It also holds up well against UV rays, making it a durable and eco-friendly alternative to natural grass in desert environments
With proper installation and minimal maintenance, artificial grass in Las Vegas can last 15–20 years. The synthetic turf is designed to withstand high temperatures, intense sun exposure, and heavy foot traffic—making it a long-lasting landscaping investment for homeowners and businesses alike.
Artificial grass can become warm during peak summer heat, but modern turf products often come with cooling technologies or heat-reflective infills to reduce surface temperatures. You can also cool it down quickly with a light spray of water. Most homeowners find it still comfortable enough for pets and kids with some shading or planning.
Yes! Most artificial grass products are non-toxic, lead-free, and soft underfoot, making them safe for children and pets. Many Las Vegas residents choose turf specifically designed for pet areas, which includes effective drainage systems and odor-reducing infill for cleanliness and hygiene.
While artificial grass requires much less upkeep than natural grass, it still benefits from occasional maintenance. Light brushing, removing debris, and rinsing with water can keep your turf clean and looking fresh. For pet areas, routine deodorizing and proper drainage ensure a clean and odor-free space.
Definitely. One of the biggest advantages of installing artificial grass in Las Vegas is the significant reduction in water usage. Since there's no need for irrigation, homeowners often see a noticeable drop in their water bills—plus it supports Las Vegas’ water conservation efforts amid ongoing drought conditions.